The HyUsPRe project researches the feasibility and potential of implementing large-scale storage of renewable hydrogen in porous reservoirs in Europe. This includes the identification of suitable geological reservoirs for hydrogen storage in Europe and an assessment of the feasibility of implementing large-scale storage in these reservoirs technologically and economically towards 2050. The project will address specific technical issues and risks regarding storage in porous reservoirs and conduct an economic analysis to facilitate the decision-making process regarding the development of a portfolio of potential field pilots. A techno-economic assessment, accompanied by environmental, social and regulatory perspectives on implementation will allow for the development of a roadmap for widespread hydrogen storage towards 2050; indicating the role of large-scale hydrogen storage in achieving a zero-emissions energy system in EU by 2050.
This project has two specific objectives. Objective 1 concerns the assessment of the technical feasibility, risks, and potential of large-scale underground hydrogen storage in porous reservoirs in Europe. HyUsPRe will establish the important geochemical, microbiological, flow and transport processes in porous reservoirs in the presence of hydrogen via a combination of laboratory-scale experiments and integrated modelling, establish more accurate cost estimates and identify the potential business case for hydrogen storage in porous reservoirs. Suitable stores will be identified and their hydrogen storage potential will be assessed. Objective 2 concerns the development of a roadmap for the deployment of geological hydrogen storage up to 2050. The proximity of hydrogen stores to large renewable energy infrastructure and the amount of renewable energy that can be buffered versus time varying demands will be evaluated..